Jason Rute

Greater Boston Area, USA

jasonrute.github.io www.linkedin.com/in/jason-rute www.github.com/jasonrute

Skills Programming Python (NumPy, Pandas, Scikit Learn, Keras/TensorFlow), Scala, SQL, functional programming, Git, AWS, Lean theorem prover, Coq

Machine Learning Transformers, graph neural networks, Bayesian inference (MCMC, hierarchical models), deep reinforcement learning, natural language processing

Professional MIT-IBM Watson AI Lab, Cambridge MA Postdoctoral Research Scientist Nov 2021–Present

- and Academic
 - **Experience**

•

Developed state-of-the-art neural theorem-proving model for the Coq proof assistant Improved large language models for generating code and tool use

CIBO Technologies, Cambridge MA Lead Data Scientist

Apr 2018–Nov 2021

Feb 2013-Jul 2013

- Developed Scala code to improve an in-house Bayesian MCMC model calibration engine
- Managed a cross-functional team of software engineers, data scientists, and agronomists to create a software library of statistical agricultural data for production use
- Devised statistical methods to use this agricultural data to improve crop model performance

Pennsylvania State University, University Park PA Research Associate Sep 2013–Jun 2017

- Developed a theory of algorithmic randomness for capacities solving two open math questions
- Coordinated a large multi-section calculus course, overseeing other instructors
- Taught calculus and logic courses, with student evaluation scores well above department average

University of Hawaii, Manoa HI Junior Researcher

Researched algorithmically random Brownian motion and computable martingales н.

Carnegie Mellon University, Pittsburgh PA Graduate Teaching Assistant Aug 2008–Dec 2012

- н. Investigated theoretical limitations of simulating exchangeable random graph networks
- Studied the convergence of random points within time series with computable distributions

Selected Al for Theorem Proving

- **Projects** Developed a novel graph neural network for Coq prover which learns to incorporate new definitions not seen during training. SoTA results. Accepted to ICML. (Paper: arXiv:2401.02949)
 - Extracted a large dataset (github.com/jasonrute/lean proof recording) of tactic proof steps from • the mathlib library of Lean. Collaborated with OpenAI to train a language model on this data, resulting in a proof suggestion tactic (github.com/jesse-michael-han/lean-gptf) and automatic proof discovery. Accepted to ICLR. (Paper: <u>arXiv:2102.06203</u>, Talk: <u>youtube:EXpmbAfBNnw</u>)

Formal Theorem Proving Formally verified mathematics in HOL-Light/OCaml as part of the Flyspeck project (github.com/flyspeck) to formally check Tom Hale's proof of the Kepler conjecture

Education	Carnegie Mellon University, Pittsburgh PA Ph.D. in Mathematical Sciences	Sep 2008–Aug 2013
	M.S. in Mathematical Sciences	
	University of Wisconsin, Madison WI B.S. in Mechanical Engineering, Mathematics, and Philosophy	Sep 1999–Aug 2004
Papers, Talks, and Patents	15 papers covering AI, Mathematics, and Computer Science–including two in top AI conferences. 30+ talks including an invite to speak at the 2025 Joint Math Meetings on topic of AI for Math. 2 patents , US Patent 10,477,756 B1, US Patent 10,498,888.	